

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Separation of HCl+NiCl₂ Mixture by Diffusion Dialysis

Zdeněk Palatý^a; Alena Žáková^a

^a Department of Chemical Engineering, University of Pardubice, Pardubice, Czech Republic

To cite this Article Palatý, Zdeněk and Žáková, Alena(2007) 'Separation of HCl+NiCl₂ Mixture by Diffusion Dialysis', Separation Science and Technology, 42: 9, 1965 — 1983

To link to this Article: DOI: 10.1080/15363830701313362

URL: <http://dx.doi.org/10.1080/15363830701313362>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Separation of HCl + NiCl₂ Mixture by Diffusion Dialysis

Zdeněk Palatý and Alena Žáková

Department of Chemical Engineering, University of Pardubice,
Pardubice, Czech Republic

Abstract: Separation of an aqueous solution of HCl + NiCl₂ by diffusion dialysis was investigated in a two-compartment mixed cell with an anion-exchange membrane Neosepta-AFN. The experiments proved that this membrane can be considered a good separator for the mixture mentioned, because nickel chloride is efficiently rejected, while hydrochloric acid permeates well through the membrane. The separation is very effective at high acid concentrations and low concentrations of nickel chloride. The separation efficiency of the membrane was evaluated by the partial flux of nickel chloride. The experiments revealed that the partial flux is very low, i.e. below 3.2%—it decreases with increasing acid concentration, but it increases with increasing content of salt in the solution separated. Moreover, the separation process was quantified by the permeability of the membrane based on four phenomenological coefficients which depend on the initial acid and salt concentrations.

Keywords: Diffusion dialysis, batch cell, hydrochloric acid, nickel chloride, Neosepta-AFN membrane

INTRODUCTION

Separation of mixtures by membranes is based on different transport rates of the individual components in the mixture as a consequence of different diffusivities or mobilities in the membrane phase. In the case of diffusion dialysis, which uses ion-exchange membranes, it is necessary to consider besides other

Received 14 September 2006, Accepted 16 February 2007

Address correspondence to Zdeněk Palatý, Department of Chemical Engineering, University of Pardubice, Legií 565, 532 10, Pardubice, Czech Republic. Tel.: +420 466 037 503; Fax: +420 466 037 068; E-mail: zdenek.palaty@upce.cz

effects the interactions between the species in the solution and positively charged sites inside the membrane. If an anion-exchange membrane is used for the separation of electrolytes, cations are rejected, while the transport of anions is facilitated. Hydrogen ions (although they are hydrated) are not effectively rejected, because they are very small and their mobility is high not only in aqueous solutions but also in the membrane phase. This phenomenon need not be considered to be a disadvantage if the anion-exchange membrane is used in the separation of acid-salt mixtures (1, 2).

Diffusion dialysis using an anion-exchange membrane was used to recover H_2SO_4 from waste sulfuric acid solutions in the diamond manufacturing process (3). It is reported that about 80% of H_2SO_4 could be recovered from the waste solution, which contained $4.5 \text{ kmol m}^{-3} \text{ H}_2\text{SO}_4$ at the liquid flow rate of $0.26 \times 10^{-3} \text{ m}^3 \text{ h}^{-1} \text{ m}^{-2}$. Under these conditions the concentration of sulfuric acid was 4.3 kmol m^{-3} , while that of the total impurity was 2000 ppm. From the economical point of view the dialysis system used is highly attractive, as the payback period is only few months. Also the use of diffusion dialysis in the recovery of sulfuric acid from the waste acid solution of aluminium surface processing plant was found to be very efficient (4). Moreover, a preliminary economic evaluation of the whole process showed that diffusion dialysis is highly viable for sulfuric acid due to its short payback period. An extensive study on the recovery of formic acid from pickling solution in the leather industry using diffusion dialysis and electro-electro dialysis was a subject of the communication (5) focused on the examining of the effects of various operating variables on the process performance with an aim to finding optimum operating conditions for both the processes. Xu and Yang dealt with sulfuric acid recovery from titanium white (pigment) waste liquor (6) and the recovery of mixed acid ($\text{HF} + \text{HNO}_3$) from the titanium spent leaching solution (7) using diffusion dialysis with a new series of anion exchange membranes. The membranes used were prepared from poly(2,6-dimethyl-1,4-phenylene oxide) by bromination in both benzyl and aryl positions and following amination and functionalization. In the case of sulfuric acid, the acid recovery from titanium white waste liquor was improved by benzyl substitution, while the selectivity by aryl substitution. It was reported that the $\text{HF} + \text{HNO}_3$ mixture can be separated selectively from the spent liquor. The separation was highly affected by the water content in the membrane and the ion-exchange capacity. In another paper (8), the same authors carried out experiments focused on simultaneous recovery of sulfuric acid and nickel from electrolysis spent liquor of relatively low acid concentration. The pilot experiments with surface cross-linked PPO anion-exchange membranes showed that nickel leakage can be controlled within 4%, and the recovery of acid can attain as high as 66–72%. Oh et al. (9) studied the effects of metal ions on the diffusion dialysis of inorganic acids using a continuous dialyzer. It was observed that the formation of complexes affected the selectivity and flux of acid. Out of five metals investigated, Fe, Ni, Cr, and Cu were reasonably rejected by the anion-exchange membrane, while Zn in the HCl

solution leaked through the membrane significantly. In reference (10) the recovery and concentration of Zn²⁺ and Cu²⁺ ions from industrial rinse water containing a mixture of Zn²⁺, Cu²⁺, Mg²⁺, K⁺, and Na⁺ ions were studied in a continuous membrane extraction, where sulfuric acid was used as a stripping agent for metal ions. In order to de-acidify the concentrate solution of Cu²⁺ ions, the diffusion dialysis technique was suggested. The experiments at steady state proved that diffusion dialysis can be evaluated as a very effective process, because its selectivity (defined as an acid flux to copper flux ratio) exhibits a high value of 166. Wisniewska et al. (11) tested the processes of electrodialysis and diffusion dialysis in the separation of model mixtures containing hydrochloric acid and ferric ions. Diffusion dialysis provided acid removal of 56–67% with high retention of ferric ions—up to 98–99%. Besides the investigation of the separation of multicomponent mixtures (ternary and quarternary) by diffusion dialysis as mentioned above, much attention has been paid to the study and the modelling of the dialysis of solutions with one component (12–20).

The aim of this paper is to obtain both basic and quantitative information on dialysis of a HCl + NiCl₂ mixture, because this system can be encountered in industrial practice.

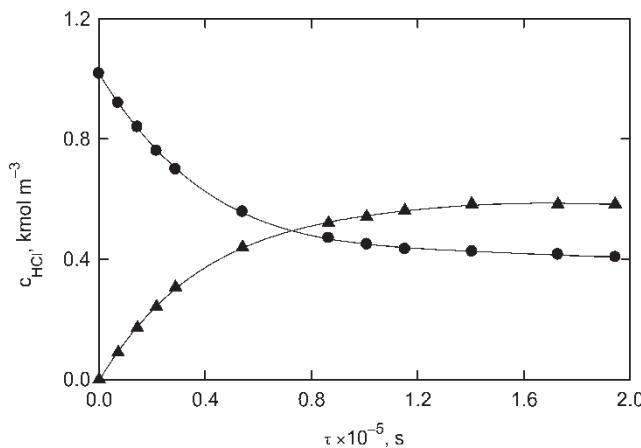
EXPERIMENTAL

Membrane Used

An anion-exchange membrane Neosepta-AFN was used in all the experiments. This polymeric strongly basic membrane is produced by Tokuyama Soda Co., Inc. (Japan). Its basic properties were as follows: thickness 165 μm , water content 0.418 g per gram of dry membrane in Cl[−] form and concentration of fixed charges (considered as monovalent) 4.7 kmol m^{−3} (see references (18, 21)). The area of the membrane was 62.2 cm².

Dialysis Experiments

The dialysis of aqueous solutions of HCl + NiCl₂ was investigated in a two-compartment cell with stirrers. Its inner dimensions were: 0.12 m \times 0.15 m \times 0.16 m (length \times width \times height). A vertical partition, in which the membrane was fastened, divided the cell into two approximately similar compartments (22). In both the compartments the liquid was stirred with laboratory stirrers with electronic rotation rate control. The experimental set-up was the same as that used in previous work (see, e.g., references (18, 21, 23, 24)).


At the beginning of each experiment, compartments I and II were filled with HCl-NiCl₂ solution and distilled water, respectively. The initial acid concentration in compartment I was changed in the range from 0.2 to

3.0 kmol m⁻³, while the salt concentration was in the range from 0.1 to 1.0 kmol m⁻³. During the experiments, both the compartments were intensively stirred ($n^I = n^{II} = 9.17 \text{ s}^{-1}$) in order to minimize the effect of liquid films on both sides of the membrane upon the transport of the components through the membrane. In the case of dialysis of single component solutions, the rotational speed of stirrers was also 13.67 s⁻¹. In the course of each experiment, the concentration of components and the height of liquid levels (for the determination of the volume changes) were measured. The acid concentration was determined from the total concentration of Cl⁻ ions (for that purpose, the samples were titrated with a standard AgNO₃ solution—the end-point being determined potentiometrically) and the concentration of Ni²⁺ ions, which was determined by titration with EDTA. In the titration of the samples from compartment I and II, the end-point was indicated visually using an indicator and by voltammetry, respectively. In the latter case, an ECO-TRIBO polarograph (PolaroSensors, The Czech Republic) was used. In all the experiments, the temperature was kept at a constant value of $20 \pm 0.5^\circ\text{C}$.


DATA TREATMENT AND DISCUSSION

Partial Flux of Salt

Figures 1–3 demonstrate the course of dialysis of an HCl + NiCl₂ mixture in a two-compartment dialysis cell. In Fig. 1, the dependences of the acid concentration in both the compartments upon time are presented, while Figs. 2 and 3

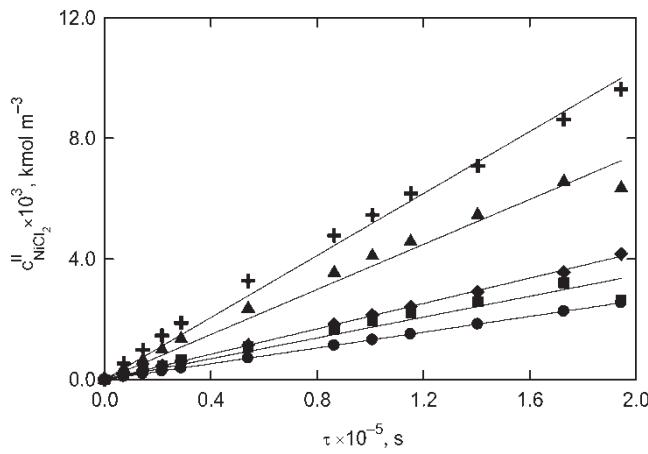


Figure 1. Dependence of HCl concentration in compartment I (●) and II (▲) upon time: $c_{\text{HCl},0}^I = 1.0 \text{ kmol m}^{-3}$; $c_{\text{NiCl}_2,0}^I = 0.25 \text{ kmol m}^{-3}$.

Figure 2. Dependence of NiCl₂ concentration in compartment II upon time for $c_{\text{HCl},0}^I = 1.0 \text{ kmol m}^{-3}$. Effect of initial NiCl₂ concentration in compartment I: (●) – $c_{\text{NiCl}_2,0}^I = 0.1 \text{ kmol m}^{-3}$; (■) – $c_{\text{NiCl}_2,0}^I = 0.25 \text{ kmol m}^{-3}$; (◆) – $c_{\text{NiCl}_2,0}^I = 0.5 \text{ kmol m}^{-3}$; (▲) – $c_{\text{NiCl}_2,0}^I = 1.0 \text{ kmol m}^{-3}$

show the concentration of NiCl₂ in the compartment with the stripping agent (water). All three figures show good separation of the HCl + NiCl₂ mixture by the anion-exchange membrane Neosepta-AFN, which was specially developed and is manufactured for diffusion dialysis. From the graphical

Figure 3. Dependence of NiCl₂ concentration in compartment II upon time for $c_{\text{NiCl}_2,0}^I = 0.25 \text{ kmol m}^{-3}$. Effect of initial HCl concentration in compartment I: (●) – $c_{\text{HCl},0}^I = 0.2 \text{ kmol m}^{-3}$; (■) – $c_{\text{HCl},0}^I = 0.5 \text{ kmol m}^{-3}$; (◆) – $c_{\text{HCl},0}^I = 1.0 \text{ kmol m}^{-3}$; (▲) – $c_{\text{HCl},0}^I = 2.0 \text{ kmol m}^{-3}$; (+) – $c_{\text{HCl},0}^I = 3.0 \text{ kmol m}^{-3}$.

presentations given in Figs. 1–3, it is evident that hydrochloric acid permeates well through this membrane, while nickel chloride is efficiently rejected. Generally, the concentration of nickel chloride in compartment II increases with increasing concentration of both HCl and NiCl_2 in compartment I and with the duration of the experiment. From the comparison of NiCl_2 concentrations in both compartments it follows that the concentration of NiCl_2 in compartment II is much lower than that in compartment I.

The separation ability of the membrane studied in the separation of the $\text{HCl} + \text{NiCl}_2$ mixture can be evaluated not only on the basis of the concentration of NiCl_2 in compartment II, but also using the partial flux of NiCl_2 through the membrane. As the fluxes of salt and acid change with time, it is necessary to refer them to the reference time, e.g., $\tau = 0$.

$$\bar{J}_{\text{NiCl}_2,0} = \frac{J_{\text{NiCl}_2,0}}{J_{\text{NiCl}_2,0} + J_{\text{HCl},0}} \times 100 \quad (1)$$

where

$$J_{i,0} = \frac{1}{A} \frac{dn_i^H}{d\tau} \Big|_{\tau=0} \quad i = \text{HCl}, \text{NiCl}_2 \quad (2)$$

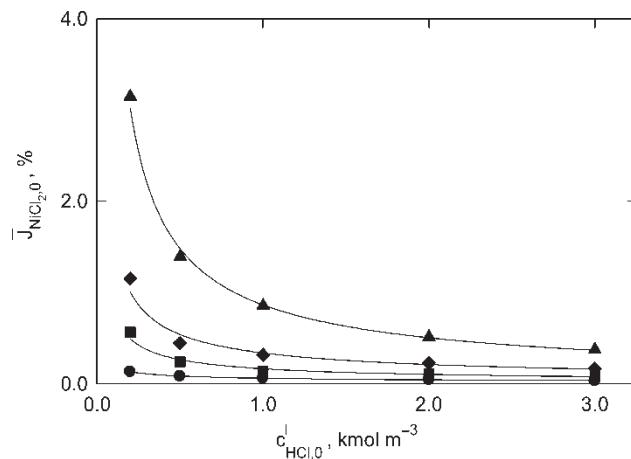
In the calculation of the flux of hydrochloric acid, the dependences $n_{\text{HCl}}^H = f(\tau)$, which were obtained from the dependences $c_{\text{HCl}}^H = f(\tau)$ multiplied by V^H , were approximated by the empirical equation (3) (where the constants a and b were determined by a non-linear regression), from which the derivation $dn_{\text{HCl}}^H/d\tau|_{\tau=0}$ can easily be calculated.

$$n_{\text{HCl}}^H = \frac{\tau}{a + b\tau} \quad (3)$$

In the case of nickel chloride, the dependences $c_{\text{NiCl}_2}^H = f(\tau)$ were approximated by straight lines with zero intercept

$$c_{\text{NiCl}_2}^H = B\tau \quad (4)$$

whose slopes were used in the calculation of the flux of nickel chloride


$$\begin{aligned} J_{\text{NiCl}_2,0} &= \frac{1}{A} \frac{dn_{\text{NiCl}_2}^H}{d\tau} \Big|_{\tau=0} = \frac{V^H}{A} \frac{dc_{\text{NiCl}_2}^H}{d\tau} \Big|_{\tau=0} \\ &+ \frac{c_{\text{NiCl}_2}^H}{A} \frac{dV^H}{d\tau} \Big|_{\tau=0} = \frac{V^H}{A} B \end{aligned} \quad (5)$$

(Note that $c_{\text{NiCl}_2,0}^H = 0$)

The dependence of the partial NiCl₂ flux at a reference time $\tau = 0$ upon the initial acid concentration in compartment I of the dialysis cell is presented in Fig. 4, the initial salt concentration in the same compartment being the parameter of the individual curves. From this figure it can be seen that the partial flux of NiCl₂ increases with increasing salt content in the mixture dialyzed. On the other hand, if the acid concentration increases, the partial NiCl₂ flux decreases. For example, at the highest NiCl₂ concentration used the NiCl₂ partial flux decreases from approx. 3.15% (at the initial acid concentration of 0.2 kmol m⁻³) to 0.37% (at the initial acid concentration of 3.0 kmol m⁻³). Based on the dependences given in Fig. 4, it can be concluded that, in the case of separation of the HCl + NiCl₂ mixture, the anion-exchange membrane Neosepta-AFN can be considered a good separator for the mixture mentioned.

Species in HCl + NiCl₂ Mixture

In the separation of mixtures of electrolytes by an ion-exchange membrane, ions and other species are transported owing to their concentration gradients. In order to analyze this complex transport, other pieces of information on the composition of the solution dialyzed must be known. According to reference (25), the following species exist in aqueous solution of HCl + NiCl₂: Cl⁻, H₃O⁺, Ni²⁺ and NiCl⁺. The concentration of the individual ions can be found by solving the set of equations describing the ionic equilibrium (Ni²⁺ + Cl⁻ ⇌ NiCl⁺) (Eq. 6), the electro-neutrality

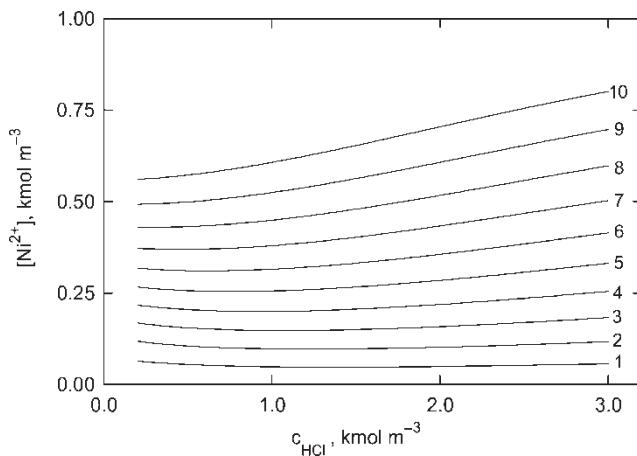
Figure 4. Dependence of partial NiCl₂ flux upon initial acid concentration in compartment I: (●) – $c_{\text{NiCl}_2,0}^I = 0.1 \text{ kmol m}^{-3}$; (■) – $c_{\text{NiCl}_2,0}^I = 0.25 \text{ kmol m}^{-3}$; (◆) – $c_{\text{NiCl}_2,0}^I = 0.5 \text{ kmol m}^{-3}$; (▲) – $c_{\text{NiCl}_2,0}^I = 1.0 \text{ kmol m}^{-3}$.

condition (Eq. 7) and the balance of hydroxonium ion (Eq. 8) and the chloride ion (Eq. 9)

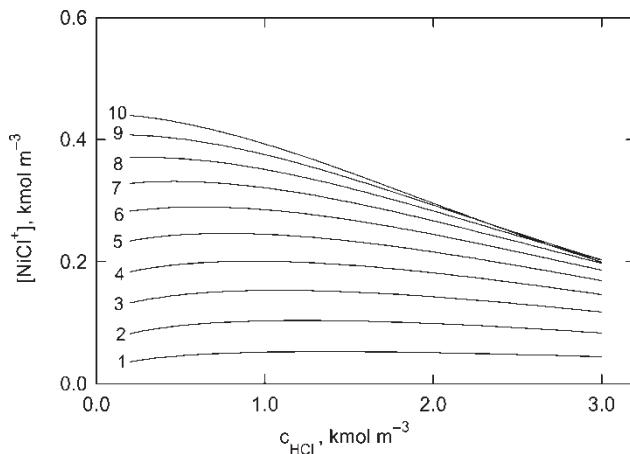
$$\frac{[\text{NiCl}^+]}{[\text{Ni}^{2+}][\text{Cl}^-]} - \beta_1 = 0 \quad (6)$$

$$[\text{H}_3\text{O}^+] + 2[\text{Ni}^{2+}] + [\text{NiCl}^+] - [\text{Cl}^-] = 0 \quad (7)$$

$$[\text{H}_3\text{O}^+] - c_{\text{HCl}} = 0 \quad (8)$$


$$[\text{Cl}^-] + [\text{NiCl}^+] - c_{\text{Cl}^-} = 0 \quad (9)$$

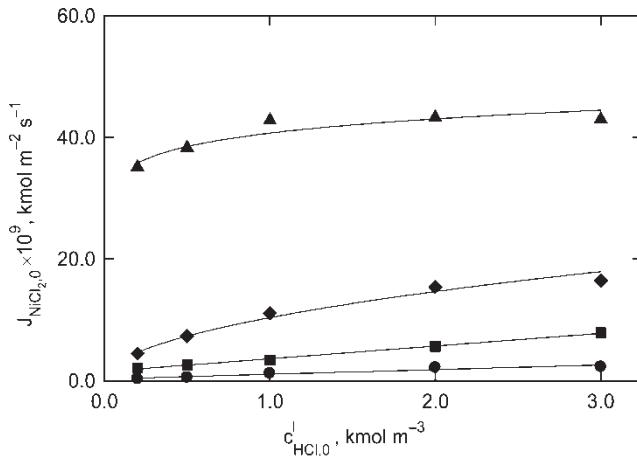
(Note that $c_{\text{Cl}^-} = c_{\text{HCl}} + 2c_{\text{NiCl}_2}$)


In the set of equations (6)–(9), the complete dissociation of hydrochloric acid was presumed.

The set of Eqs (6)–(9) was solved by the Newton–Raphson method. The results are presented in Figs. 5 and 6 as dependences of the Ni^{2+} and NiCl^+ concentrations upon the acid and salt concentrations. The concentration limits for hydrochloric acid and nickel chloride correspond to those in the experiments.

In reference (25) only three values of β_1 are given at the temperature of 25°C, at the ionic strength equal to 1.0, 2.0 and 3.0 kmol m^{-3} . First, these data were extrapolated to obtain the complexity constant at zero ionic strength. Then all the data were approximated by the empirical exponential function (10) in order to enable the interpolation and extrapolation of the data. As we did not succeed in finding data enabling the calculation of ΔH_r for the

Figure 5. Dependence of concentration of Ni^{2+} ions upon HCl concentration in aqueous solution: 1 – $c_{\text{NiCl}_2} = 0.1 \text{ kmol m}^{-3}$; 2 – $c_{\text{NiCl}_2} = 0.2 \text{ kmol m}^{-3}$; 3 – $c_{\text{NiCl}_2} = 0.3 \text{ kmol m}^{-3}$; 4 – $c_{\text{NiCl}_2} = 0.4 \text{ kmol m}^{-3}$; 5 – $c_{\text{NiCl}_2} = 0.5 \text{ kmol m}^{-3}$; 6 – $c_{\text{NiCl}_2} = 0.6 \text{ kmol m}^{-3}$; 7 – $c_{\text{NiCl}_2} = 0.7 \text{ kmol m}^{-3}$; 8 – $c_{\text{NiCl}_2} = 0.8 \text{ kmol m}^{-3}$; 9 – $c_{\text{NiCl}_2} = 0.9 \text{ kmol m}^{-3}$; 10 – $c_{\text{NiCl}_2} = 1.0 \text{ kmol m}^{-3}$.


Figure 6. Dependence of concentration of NiCl^+ ions upon HCl concentration in aqueous solution. Parameter of individual lines is the same as that in Fig. 5.

reaction between Cl^- and Ni^{2+} ions, which is needed for the recalculation of β_1 to the temperature of 20°C, the complexity constant at 25°C was used.

$$\beta_1 = 2.042 \exp[-0.656I] \quad (10)$$

Beside the partial flux of NiCl_2 , the flux of NiCl_2 through the membrane at a reference time $\tau = 0$ (see Eq. 5) was analyzed, too. The dependence of the NiCl_2 flux upon the initial acid concentration in compartment I at various initial salt concentration is shown in Fig. 7. It is evident from this graphical presentation that the NiCl_2 flux exhibits low values—it is in the range from $0.3 \times 10^{-9} \text{ kmol m}^{-2} \text{ s}^{-1}$ to $43.0 \times 10^{-9} \text{ kmol m}^{-2} \text{ s}^{-1}$. This low flux is due to the fact that no ions or complexes with negative charge, whose transport through the anion-exchange membrane is facilitated, are present in the solution.

The flux of nickel chloride through the membrane is a sum of the Ni^{2+} and NiCl^+ fluxes. Inside the anion-exchange membrane, repulsive forces between Ni^{2+} ions and fixed charges in the membrane are higher than those between NiCl^+ ions and fixed charges. However, on the other hand, NiCl^+ ions are larger than Ni^{2+} ions, so that their transport through the membrane is retarded. As can be seen in Fig. 7, the flux of NiCl_2 moderately increases with increasing acid concentration in the solution. At the same time, the increase in the acid concentration causes an increase in the Ni^{2+} concentration (Fig. 5), while the concentration of NiCl^+ ions decreases (Fig. 6). These graphical presentations indicate that the increase in the nickel flux through the membrane can be ascribed to Ni^{2+} ions.

Figure 7. Dependence of NiCl_2 flux at reference time $\tau = 0$ upon initial HCl concentration in compartment I: (●) – $c_{\text{NiCl}_2,0}^I = 0.1 \text{ kmol m}^{-3}$; (■) – $c_{\text{NiCl}_2,0}^I = 0.25 \text{ kmol m}^{-3}$; (◆) – $c_{\text{NiCl}_2,0}^I = 0.5 \text{ kmol m}^{-3}$; (▲) – $c_{\text{NiCl}_2,0}^I = 1.0 \text{ kmol m}^{-3}$.

Permeability of Membrane

In the case of a binary system, i.e. a system consisting of solvent and component A, permeability the of the membrane for component A is interrelated with the flux by the following equation

$$J_A = P_A(c_{Af}^I - c_{Af}^{II}) \quad (11)$$

where c_{Af}^I and c_{Af}^{II} are the concentrations of the component A at the solution/membrane interface.

The flux of component A can easily be determined from the change in the concentration of component A in compartment I or II, i.e.

$$J_A = -\frac{1}{A} \frac{dn_A^I}{d\tau} = \frac{1}{A} \frac{dn_A^{II}}{d\tau} = -\frac{V^I}{A} \frac{dc_A^I}{d\tau} - \frac{c_A^I}{A} \frac{dV^I}{d\tau} = \frac{V^{II}}{A} \frac{dc_A^{II}}{d\tau} + \frac{c_A^{II}}{A} \frac{dV^{II}}{d\tau} \quad (12)$$

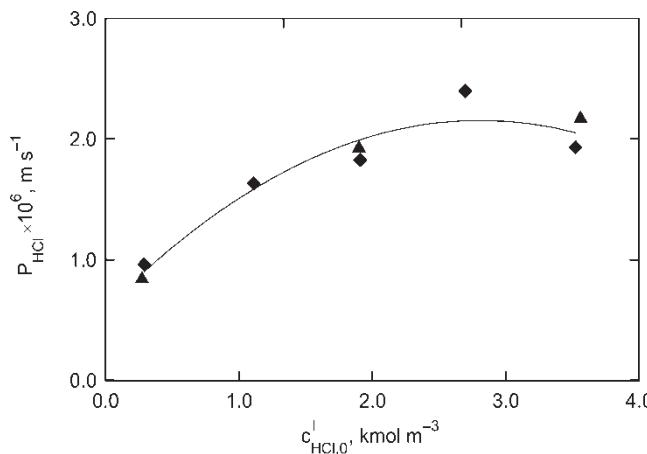
A combination of Eqs (11) and (12) leads to Eqs (13) and (14), which describe the time dependences of the concentration of component A in compartments I and II, respectively.

$$\frac{dc_A^I}{d\tau} = -\frac{A}{V^I} P_A(c_{Af}^I - c_{Af}^{II}) - \frac{c_A^I}{V^I} \frac{dV^I}{d\tau} \quad (13)$$

$$\frac{dc_A^{II}}{d\tau} = \frac{A}{V^{II}} P_A(c_{Af}^I - c_{Af}^{II}) - \frac{c_A^{II}}{V^{II}} \frac{dV^{II}}{d\tau} \quad (14)$$

The initial conditions for Eqs 13 and 14 are

$$\tau = 0 \quad c_A^I = c_{A0}^I \quad c_A^{II} = c_{A0}^{II} = 0 \quad (15)$$


If the $c_A - \tau$ dependences in both the compartments and the volume changes are known, then the set of Eqs (13) and (14) can be numerically integrated. If this integration is followed by a suitable optimizing procedure, which searches for a minimum of the objective function (16), then it is possible to determine the permeability of the membrane for component A

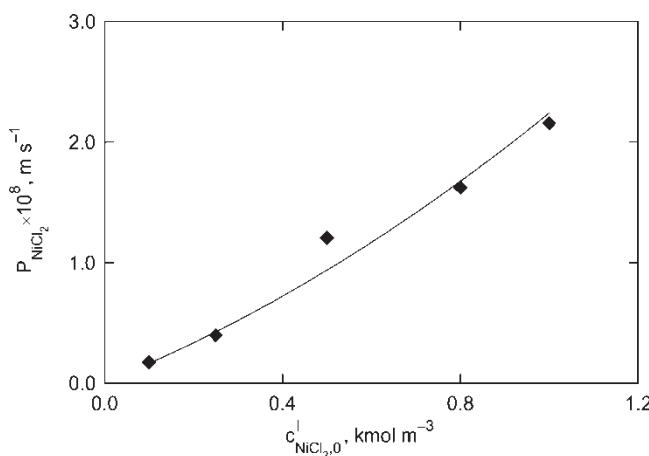
$$F(P_A) = \sum_{i=1}^n \left(\frac{c_{A,exp}^{II,i} - c_{A,calc}^{II,i}}{c_{A,exp}^{II,i}} \right)^2 \quad (16)$$

(Note: n is the number of the experimental points in one time series)

Generally, the transport of component A through the membrane (Eqs (13) and (14)) must be solved simultaneously with that in liquid films, whose existence is supposed on both sides of the membrane. If the effect of liquid films can be neglected (no effect of increase in the intensity of mixing upon the permeability coefficient is observed), the concentrations c_{Af}^I and c_A^{II} are equal to c_A^I and c_A^{II} , respectively.

In Fig. 8 the permeability coefficient for hydrochloric acid is plotted against the initial acid concentration in compartment I. It is evident that the permeability of the Neosepta-AFN membrane for HCl (A = HCl) exhibits high values, i.e. it is in the range from approx. 0.84×10^{-6} to $2.4 \times 10^{-6} \text{ m s}^{-1}$. Moreover, no effect of increase in the intensity of

Figure 8. Dependence of permeability coefficient of HCl upon initial acid concentration in compartment I — dialysis of single component solutions: (\blacktriangle) — $n^I = n^{II} = 9.13 \text{ s}^{-1}$; (\blacklozenge) — $n^I = n^{II} = 13.67 \text{ s}^{-1}$.


mixing upon P_A can be identified in Fig. 8. As the transport characteristics of the solution/membrane system are usually referred to the initial acid concentration in compartment I, we modified the procedure given above in such a way that the objective function (16) was considered a function of the coefficients a_0 , a_1 and a_2 of the polynomial (17) used for the approximation of the dependence $P_A = f(c_{A0}^I)$. For that purpose, the experimental data at $n^I = n^{II} = 9.17$ and 13.67 s^{-1} were used.

$$P_A = a_0 + a_1 c_{A0}^I + a_2 (c_{A0}^I)^2 \quad (17)$$

Using a simplex optimizing method (the algorithm by Nelder and Mead), the following values of a_i ($i = 0, 1, 2$) were found: $a_0 = 5.96 \times 10^{-7} \text{ m s}^{-1}$; $a_1 = 1.11 \times 10^{-6} \text{ m}^4 \text{ s}^{-1} \text{ kmol}^{-1}$; $a_2 = -1.98 \times 10^{-8} \text{ m}^7 \text{ s}^{-1} \text{ kmol}^{-2}$. In Fig. 8, the values of P_A calculated from polynomial (17) are drawn by the solid line.

In a similar way, the permeability coefficient and the constants of polynomial (17) for nickel chloride ($A = \text{NiCl}_2$) were determined, too. (see Fig. 9). In this case: $a_0 = 6.27 \times 10^{-11} \text{ m s}^{-1}$; $a_1 = 1.53 \times 10^{-8} \text{ m}^4 \text{ s}^{-1} \text{ kmol}^{-1}$; $a_2 = 7.15 \times 10^{-9} \text{ m}^7 \text{ s}^{-1} \text{ kmol}^{-2}$. The results graphically presented in Fig. 9 show that the permeability coefficient for NiCl_2 is about two orders of magnitude lower than that for HCl . These results are consistent with those obtained before.

Equations (18) and (19) were used in order to express the fluxes of the individual components through the membrane in the case of dialysis of a HCl (A) + NiCl_2 (B) mixture. It is a convenient phenomenological correlation which is loosely founded on the analogy to diffusion in ternary mixtures,

Figure 9. Dependence of permeability coefficient of NiCl_2 upon initial salt concentration in compartment I — dialysis of single component solutions.

where the flux of one component is affected not only by its own concentration gradient but also by the concentration gradient of the other component.

$$J_A = P_{AA}(c_A^I - c_A^{II}) + P_{AB}(c_B^I - c_B^{II}) \quad (18)$$

$$J_B = P_{BA}(c_A^I - c_A^{II}) + P_{BB}(c_B^I - c_B^{II}) \quad (19)$$

As shown above, the permeability coefficient for hydrochloric acid and nickel chloride can be expressed as a function of the initial concentration in compartment I. For the same reason, it can be supposed that the coefficients P_{ij} ($i = A, B; j = A, B$) are functions of both the initial acid and salt concentrations in compartment I, i.e.

$$P_{ij} = P_{ij,0}[1 + A_{ij,1}c_{A0}^I + A_{ij,2}(c_{A0}^I)^2 + A_{ij,3}c_{B0}^I + A_{ij,4}(c_{B0}^I)^2] \quad (20)$$

The total number of the parameters in Eq. (20) is 20, but fortunately, some of them can be determined by independent calculations, i.e. $P_{AA,0}$, $A_{AA,1}$, $A_{AA,2}$, $P_{BB,0}$, $A_{BB,3}$ and $A_{BB,4}$.

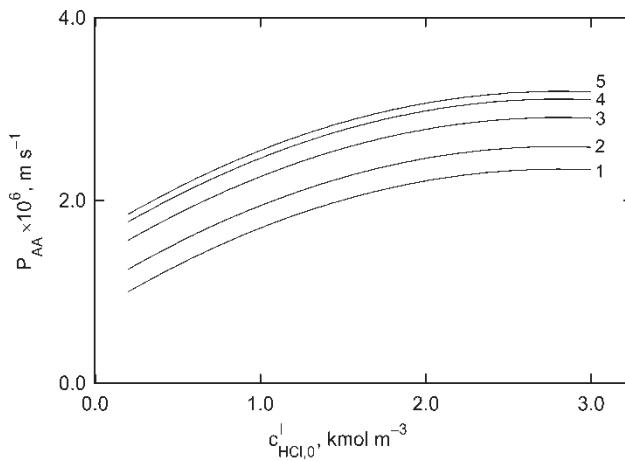
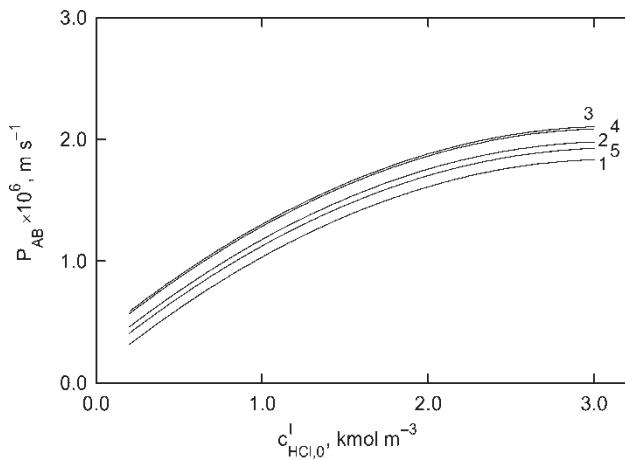
In order to calculate the coefficients $P_{ij,0}$ and $A_{ij,k}$ ($i = A, B; j = A, B; k = 1, 2, \dots, 4$) except for $P_{AA,0}$, $A_{AA,1}$, $A_{AA,2}$, $P_{BB,0}$, $A_{BB,3}$ and $A_{BB,4}$, the following set of differential equations was numerically solved

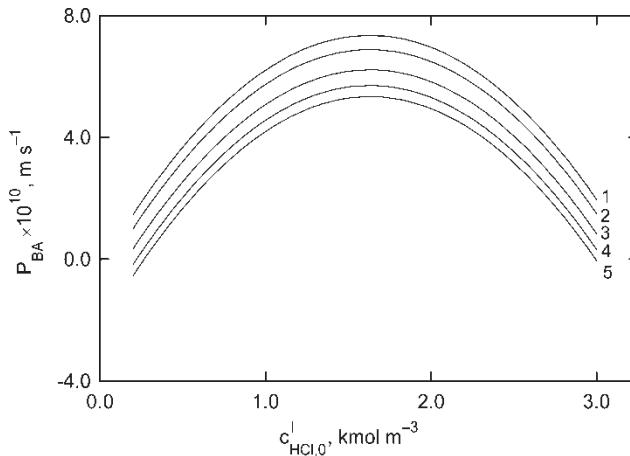
$$\frac{dc_A^{II}}{d\tau} = \frac{A}{V^{II}}[P_{AA}(c_A^I - c_A^{II}) + P_{AB}(c_B^I - c_B^{II})] - \frac{c_A^{II}}{V^{II}} \frac{dV^{II}}{d\tau} \quad (21)$$

$$\frac{dc_B^{II}}{d\tau} = \frac{A}{V^{II}}[P_{BA}(c_A^I - c_A^{II}) + P_{BB}(c_B^I - c_B^{II})] - \frac{c_B^{II}}{V^{II}} \frac{dV^{II}}{d\tau} \quad (22)$$

The initial conditions for Eqs 21 and 22 are

$$\tau = 0 \quad c_A^{II} = c_{A0}^{II} = 0 \quad c_B^{II} = c_{B0}^{II} = 0 \quad (23)$$



Equation (21) is a combination of Eqs (12) and (18), while Eq. (22) is a combination of Eq. (12) written for the component B (NiCl₂) and Eq. (19). This integration was followed by the optimizing procedure searching for a minimum of the objective function (24)


$$F = \sum_{i=1}^n \left[\left(\frac{c_{A,exp}^{II,i} - c_{A,calc}^{II,i}}{c_{A,exp}^{II,i}} \right)^2 + \left(\frac{c_{B,exp}^{II,i} - c_{B,calc}^{II,i}}{c_{B,exp}^{II,i}} \right)^2 \right] \quad (24)$$

The calculated values of the coefficients of polynomials (20) are summarized in Table 1. Moreover, the coefficients P_{ij} ($i = A, B; j = A, B$) are plotted against the initial acid concentration in compartment I in Figs. 10–13. In all the figures, the initial concentration of nickel chloride in compartment I is a parameter of the individual curves. The graphical presentation in Fig. 10 indicates that the phenomenological coefficient P_{AA} is of the same order of magnitude as the coefficient P_A . Moreover, it is influenced not only by the initial acid concentration but also the initial concentration of nickel chloride in compartment I. The value of P_{AA} increases with increasing both the acid

Table 1. Coefficients of polynomials (20)

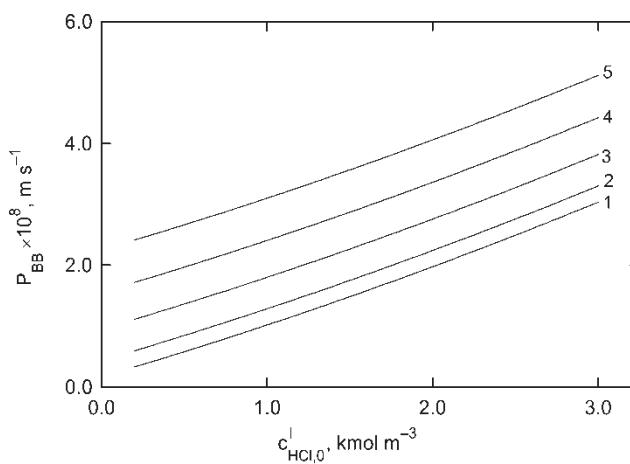

P_{ij}	$P_{ij,0} \text{ m s}^{-1}$	$A_{ij,1} \text{ m}^3 \text{ kmol}^{-1}$	$A_{ij,2} \text{ m}^6 \text{ kmol}^{-2}$	$A_{ij,3} \text{ m}^3 \text{ kmol}^{-1}$	$A_{ij,4} \text{ m}^6 \text{ kmol}^{-2}$
P_{AA}	5.959×10^{-7}	1.863	-3.316×10^{-1}	3.301	-1.560
P_{AB}	-2.329×10^{-8}	-47.62	7.608	-58.53	49.25
P_{BA}	5.212×10^{-12}	1.797×10^2	-55.09	-67.79	22.62
P_{BB}	6.273×10^{-11}	1.272×10^2	8.402	2.437×10^2	1.139×10^2

Figure 10. Dependence of coefficient P_{AA} upon initial acid concentration in compartment I: 1 – $c_{B0}^I = 0.1 \text{ kmol m}^{-3}$; 2 – $c_{B0}^I = 0.25 \text{ kmol m}^{-3}$; 3 – $c_{B0}^I = 0.5 \text{ kmol m}^{-3}$; 4 – $c_{B0}^I = 0.75 \text{ kmol m}^{-3}$; 5 – $c_{B0}^I = 1.0 \text{ kmol m}^{-3}$.**Figure 11.** Dependence of coefficient P_{AB} upon initial acid concentration in compartment I. Parameter of individual lines is the same as that in Fig. 10.

Figure 12. Dependence of coefficient P_{BA} upon initial acid concentration in compartment I. Parameter of individual lines is the same as that in Fig. 10.

and salt concentration at $\tau = 0$ in compartment I. This means that the flux of acid caused by its own concentration difference is positively influenced by c_{A0}^I and c_{B0}^I . Also the coefficient P_{AB} is of the same order of magnitude as the coefficients P_A and P_{AA} , but on the other hand, it is somewhat lower than P_A or P_{AA} (see Fig. 11). The coefficient P_{AB} gradually increases with increasing initial acid concentration, but the dependence $P_{AB} = f(c_{B0}^I)$ at a constant c_{A0}^I exhibits a maximum, namely at a concentration $c_{B0}^I = 0.594 \text{ kmol m}^{-3}$. The phenomenological coefficient P_{BA} exhibits very low values, as shown in

Figure 13. Dependence of coefficient P_{BB} upon initial acid concentration in compartment I. Parameter of individual lines is the same as that in Fig. 10.

Fig. 12. It is about four orders of magnitude lower than the coefficients discussed before, i.e. P_A , P_{AA} and P_{AB} . This coefficient is negatively influenced by increasing initial acid concentration of nickel chloride, while the dependence $P_{BA} = f(c_{A0}^I)$ at a constant c_{B0}^I shows a maximum at the initial acid concentration of 1.63 kmol m^{-3} . The coefficient P_{BA} with the coefficient P_{BB} , which is approx. two orders of magnitude higher than P_{BA} (see Fig. 13), indicate very low flux of nickel chloride through the Neosepta-AFN membrane. As the concentration differences of both the acid and the salt are of the same order of magnitude, the coefficient P_{BB} plays a dominant role in the transport of nickel chloride through the membrane. The last phenomenological coefficient P_{BB} increases with increasing initial concentrations of both the acid and the salt, so the NiCl_2 flux increases with increasing initial acid and salt concentrations in compartment I. This conclusion is in a qualitative accordance with the graphical presentations given in Fig. 5.

CONCLUSION

Simultaneous transport of hydrochloric acid and nickel chloride through the anion-exchange membrane Neosepta-AFN (Tokuyama Soda Co., Japan) was investigated using a two-compartment cell with stirrers. The following parameters characterizing the separation process were determined from the time dependences of acid and salt concentrations in the compartment initially filled with distilled water: the partial flux of nickel chloride at a reference time $\tau = 0$ and permeability of the membrane based on four phenomenological coefficients in analogy with the description of diffusion in ternary mixtures. The results obtained showed that the Neosepta-AFN membrane can be considered a good separator for $\text{HCl} + \text{NiCl}_2$ mixture.

SYMBOLS

A	membrane area, m^2
$A_{ij,1}$	($i = \text{A}, \text{B}; j = \text{A}, \text{B}$) constants in Eq. (20), $\text{m}^3 \text{ kmol}^{-1}$
$A_{ij,2}$	($i = \text{A}, \text{B}; j = \text{A}, \text{B}$) constants in Eq. (20), $\text{m}^6 \text{ kmol}^{-2}$
$A_{ij,3}$	($i = \text{A}, \text{B}; j = \text{A}, \text{B}$) constants in Eq. (20), $\text{m}^3 \text{ kmol}^{-1}$
$A_{ij,4}$	($i = \text{A}, \text{B}; j = \text{A}, \text{B}$) constants in Eq. (20), $\text{m}^6 \text{ kmol}^{-2}$
a	constant in Eq. (3), s kmol^{-1}
a_0	constant in Eq. (17), m s^{-1}
a_1	constant in Eq. (17), $\text{m}^4 \text{ s}^{-1} \text{ kmol}^{-1}$
a_2	constant in Eq. (17), $\text{m}^7 \text{ s}^{-1} \text{ kmol}^{-2}$
B	constant in Eq. (4), $\text{kmol m}^{-3} \text{ s}^{-1}$
b	constant in Eq. (3), kmol^{-1}
c	molar concentration, kmol m^{-3}
F	objective function

f	general function
ΔH_r	reaction enthalpy, kJ kmol ⁻¹
I	ionic strength, kmol m ⁻³
J	molar flux, kmol m ⁻² s ⁻¹
\bar{J}	partial flux, %
n	amount of component, kmol
n	rotational speed of stirrer, s ⁻¹
P	permeability of membrane, m s ⁻¹
P_{ij}	($i = A, B$; $j = A, B$) phenomenological coefficients, m s ⁻¹
$P_{ij,0}$	($i = A, B$; $j = A, B$) constants in Eqs (20), m s ⁻¹
V	volume, m ³
β_1	complexity constant
τ	time, s
[]	actual concentration, kmol m ⁻³ (in Eq. (6) dimensionless)

Superscripts and Subscripts

A	referred to component A
B	referred to component B
Cl ⁻	referred to chlorides
f	referred to solution/membrane interface
HCl	referred to hydrochloric acid
NiCl ₂	referred to nickel chloride
I, II	referred to compartment I and II, resp.
0	referred to time $\tau = 0$

ACKNOWLEDGEMENT

This work was financially supported by the Ministry of Education, Youth and Sport of the Czech Republic — Project MSM 0021627502.

REFERENCES

1. Kobuchi, Y., Motomura, H., Noma, Y., and Hanada, F. (1984) Application of the ion-exchange membranes acid recovery by diffusion dialysis, in: Preceedings of the Europe–Japan Congress on Membranes and Membrane Processes, Stressa, Italy.
2. Kobuchi, Y., Motomura, H., Noma, Y., and Hanada, F. (1986) Application of the ion-exchange membranes to the recovery of acids by diffusion dialysis. *J. Membrane Sci.*, 27: 173.
3. Jeong, J., et al. (2005) Recovery of H₂SO₄ from waste acid solution by a diffusion dialysis method. *J. Hazard. Mater.*, 124: 230.

4. Lin, S.H. and Lo, Mu C. (1998) Recovery of sulfuric acid from waste aluminium surface processing solution by diffusion dialysis. *J. Hazard. Mater.*, 60: 247.
5. Akgemci, E.G., Ersöz, M., and Atalay, T. (2004) Transport of formic acid through anion exchange membranes by diffusion dialysis and electro-electro dialysis. *Sep. Sci. Technol.*, 39: 165.
6. Xu, T.W. and Yang, W.H. (2001) Sulfuric acid recovery from titanium white (pigment) waste liquor using diffusion dialysis with a new series of anion-exchange membranes. Static runs. *J. Membrane Sci.*, 183: 193.
7. Xu, T.W. and Yang, W.H. (2003) Industrial recovery of mixed acid (HF + HNO₃) from the titanium spent leaching solutions by diffusion dialysis with a new series of anion-exchange membranes. *J. Membrane Sci.*, 220: 89.
8. Xu, T.W. and Yang, W.H. (2004) Tuning the diffusion dialysis performance by surface cross-linking of PPO anion-exchange membranes. Simultaneous recovery of sulfuric acid and nickel from electrolysis spent liquor of relatively low acid concentration. *J. Hazard Mater.*, 109: 157.
9. Oh, S.-J., Moon, S.-H., and Davis, T. (2000) Effects of metal ions on diffusion dialysis of inorganic acids. *J. Membrane Sci.*, 169: 95.
10. Wódzki, R. and Szczepański, P. (2001) Treatment of electroplating rinse solution by continuous membrane extraction and diffusion dialysis. *Polish. J. Environ. Studies*, 10: 101.
11. Wisniewska, G., Wisniewski, J., and Winnicki, T. (1993) Recovery of acid and water by membrane dialysis. *Desalination*, 91: 307.
12. Kang, M.-S., Yoo, K.-S., Oh, S.-J., and Moon, S.-H. (2001) A lumped parameter model to predict hydrochloric acid recovery in diffusion dialysis. *J. Membrane Sci.*, 188: 61.
13. Yeh, H.M. and Hsieh, M.J. (2003) Analysis of membrane dialysis through rectangular mass exchanger. *J. Chin. Inst. Chem. Engrs.*, 34: 381.
14. Ersöz, M., Gugul, I.H., and Sahin, A. (2001) Transport of acids through polyether-sulfone anion-exchange membrane. *J. Colloid Interf. Sci.*, 237: 130.
15. Özdural, A.R. and Alkan, A. (2003) Derivation of new explicit equation for the determination of overall mass transfer coefficients in continuous dialyzer. *J. Membrane Sci.*, 223: 49.
16. Özdural, A.R. (1994) A new technique for the determination of overall mass-transfer coefficients in continuous dialyzer. *Dev. Chem. Eng. Mineral Process*, 2: 138.
17. Yeh, H.M. and Chang, Y.H. (2005) Mass transfer for dialysis through parallel-flow double-pass rectangular membrane modules. *J. Membrane Sci.*, 260: 1.
18. Palatý, Z. and Žáková, A. (2000) Apparent diffusivity of some inorganic acids in anion-exchange membrane. *J. Membrane Sci.*, 173: 211.
19. Palatý, Z. and Žáková, A. (2003) Transport of some strong incompletely dissociated acids through anion-exchange membrane. *J. Colloid Interf. Sci.*, 268: 188.
20. Palatý, Z. and Žáková, A. (2004) Transport of nitric acid through anion-exchange membrane Neosepta-AFN. *Desalination*, 160: 51.
21. Palatý, Z. and Žáková, A. (2004) Separation of H₂SO₄ + CuSO₄ mixture by diffusion dialysis. *J. Hazard. Mater.*, B114: 69.
22. Palatý, Z. and Žáková, A. (1994) Diffusion dialysis of sulfuric acid in a batch cell. *Collect. Czech. Chem. Commun.*, 59: 1971.

23. Palatý, Z., Žáková, A., and Doleček, P. (2000) Modelling the transport of Cl⁻ ions through the anion-exchange membrane Neosepta-AFN. Systems HCl/membrane/H₂O and HCl-FeCl₃/membrane/H₂O, *J. Membrane Sci.*, 165: 237.
24. Palatý, Z. and Žáková, A. (2001) Transport of hydrochloric acid through anion-exchange membrane Neosepta-AFN. Application of Nernst–Planck equation. *J. Membrane Sci.*, 189: 205.
25. Kotrlý, S. and Šúcha, L. (1985) *Handbook of Chemical Equilibria in Analytical Chemistry*; Ellis Horwood: Chichesters.